Как устроена обычная лампа накаливания?
Категория: Источники освещения
Содержание
Электрическая лампочка накаливания представляет собой источник света искусственного происхождения, оснащенный тонкой нитью из сплава на основе вольфрама или другого металла с повышенной температурой плавления. Рабочее тело расположено внутри стеклянной колбы, для увеличения ресурса воздух из емкости откачан (возможно заполнение резервуара инертным газом). Лампочка подсоединяется к бытовой сети при помощи металлического резьбового цоколя.
Конструкция лампы накаливания
Изделия выпускаются с различными типоразмерами цоколя и конфигурацией колбы. Независимо от внешних характеристик, в устройство лампы накаливания входят стеклянная защитная оболочка, элемент для установки и подключения к сети и рабочее тело с подводящими напряжение электродами. Коммутационные элементы имеют специальную прорезь, уменьшающую сечение. Элемент снижает риск взрыва стеклянной колбы источника света.
Для изготовления колбы применяется силикатное стекло с добавками минералов, содержащих натрий и кальций. Специальные источники света изготовляются из стекла с примесью бора, допускающего повышенный нагрев при работе. Воздух откачивается из полости колбы вакуумным насосом через специальную трубку (штенгель), которая затем запаивается. Вакуумированные колбы используются для малогабаритных изделий мощностью до 20-25 Вт.
Резервуар ламп мощностью 25 Вт и выше заполняется смесью азота и инертного газа, снижающего испарение металла с поверхности тела накала. Для повышения яркости свечения в композицию вводится криптон. Для дорогостоящих изделий используется заполнение ксеноном, яркость таких источников света превышает в 2 раза аналогичные конструкции, заполненные смесью аргона с азотом. Внутренняя поверхность колбы покрывается белым или цветным матовым составом, снижающим яркость свечения.
Для изготовления нити или пластины применяется вольфрам или сплавы на его основе (с добавкой осмия). Для производства нити предлагался карбид тантала, обеспечивающий пониженное испарение при нагреве. В промышленное производство детали не пошли из-за хрупкости материала. Нить изготовлена из проволоки круглого сечения, завитой в спираль для снижения размеров и улучшения теплообмена. Концы элемента зажимаются в контактных пластинах из молибденовой проволоки. Выводы контактов изготовлены из меди, концы привариваются к цоколю.
Для поддержки нити использованы специальные зажимы, выполненные из тугоплавких металлов (например, молибдена). Фиксаторы монтируются на специальной площадке (штабике), изготовленной из стекла и установленной на лопатке. Стеклянные компоненты соединяются оплавлением материала.
Спираль устанавливается на точках крепления в виде половины шестигранника, обеспечивая равномерное распределение светового потока. Источники света, устанавливаемые в прожекторах, оснащаются двойной спиралью, позволяющей повысить яркость без роста нагрева тела накала. Допускается изготовление нитей в виде ажурных элементов (используется для ламп декоративных светильников).
Для фиксации лампы в патроне и подачи напряжения применяется стандартизированный цоколь с винтовой или зажимной внешней поверхностью. Для изготовления элемента идет сталь со специальным защитным покрытием. С целью снижения веса и стоимости для цоколей используется алюминиевый сплав. Цоколь соединяется с колбой термостойким клеем.
Для ламп с винтовым типом цоколя применяется обозначение Е (от имени автора конструкции – Эдисона). В коде используется двузначное число, обозначающее диаметр установочного элемента в миллиметрах. На нижней части коммутационного узла имеется второй контакт, изолированный от внешнего стакана кольцом из специального компаунда. Цоколи штифтовой (или байонетной) схемы маркируются буковой В, используются в промышленном оборудовании и автомобилях. Для подвода напряжения применяются штифты и нижний элемент, изолированный от металлического направляющего стакана.
Принцип работы электрической лампы накаливания
Принцип работы лампы накаливания основан на разогреве тела накала проходящим электрическим током. На ранних образцах использовались элементы из угольного порошка. Использование вольфрамовых сплавов, выдерживающих нагрев до 3000°С, позволило повысить световой поток при увеличении ресурса изделия. При нагреве с поверхности спирали начинается испарение частиц металла, приводящее к постепенному выгоранию элемента и выходу лампы из строя.
При заполнении колбы смесью азота с инертным газом принцип действия искусственного источника света немного меняется. Давление газовой среды противодействует улетучиванию атомов металла с поверхности спирали, позволяя увеличить рабочую температуру тела накала. Дополнительно улучшается коэффициент полезного действия, а спектр свечения сдвигается к белому цвету. Инертный газ дополнительно противодействует осаждению продуктов разрушения спирали на внутренней поверхности колбы.
Достоинства ламп накаливания
Основные преимущества ламп накаливания:
- компактные габариты и стабильный цветовой спектр излучения;
- не требуется дополнительный блок для розжига и поддержки работы изделия;
- простая конструкция и отработанная технология изготовления, положительно влияющие на стоимость;
- свечение не чувствительно к воздействию ионизирующей радиации и электромагнитных импульсов;
- конструкция спирали допускает скачки напряжения;
- при подаче напряжения лампа включается мгновенно;
- в конструкции изделия не применяются токсичные вещества, требующие особых условий утилизации или переработки;
- допускается использование в сетях постоянного и переменного тока;
- при коммутации не имеет значения полярность;
- конструктивная схема позволяет выпускать оборудование, рассчитанное на разное напряжение питания;
- возможна корректировка яркости свечения при помощи дополнительного сопротивления (диммера);
- при коммутации к сети переменного тока отсутствует пульсация света;
- нет гудения и иных посторонних шумов при работе;
- допускается эксплуатация при отрицательной температуре;
- при работе не создаются помехи, препятствующие приему радиоволн;
- устойчивость конструкции к образованию конденсата.
Недостатки ламп накаливания
Помимо перечисленных достоинств, есть недостатки, послужившие причиной разработки новых источников искусственного освещения:
- низкий электрический и световой КПД;
- скачок тока в момент розжига лампы;
- преобладание в световом потоке желтой и красной частей спектра;
- небольшой срок службы ламп накаливания (не более 1 тыс. часов);
- хрупкий материал колбы чувствителен к вибрациям;
- при разрушении нити возможен разрыв внешней стеклянной оболочки;
- зависимость ресурса и светового потока от напряжения питания;
- нагрев внешней оболочки до +290...+330°С;
- для установки ламп мощностью выше 150 Вт требуется применение светильников и коммутационных элементов из термостойких материалов;
- падение яркости излучения по мере выгорания нити;
- световой поток негативно влияет на зрение человека (из-за слепящей яркости), что требует использования абажуров или матового покрытия на колбу.
Коэффициент полезного действия
Потребляемый лампой электрический ток только частично преобразуется в видимое человеческим глазом световое излучение. Часть энергии уходит на тепловые потери и рассеивается в окружающую среду колбой и цоколем, а часть – затрачивается на формирование инфракрасного потока, который не фиксируется пользователями. КПД лампы зависит от потребляемой мощности, материала нити накала и температуры нагрева.
Коэффициент полезного действия для бытовых источников света составляет до 2,6%, высокотемпературные промышленные изделия имеют КПД до 5,1%.
Рост КПД ограничивается температурой 3400°С, дальнейший разогрев нити невозможен из-за начала плавления вольфрамового сплава. Проведенные исследования показали, что приближение температуры рабочего тела до максимально возможного значения позволяет увеличить яркость в 2 раза, при этом срок эксплуатации уменьшается на 90-95%. Понижение напряжения положительно сказывается на ресурсе изделия, методика применяется при формировании цепей дежурного освещения (при отсутствии требований по яркости).