Устройство и принцип действия светодиода

Категория: Источники освещения

Светодиоды были изобретены около полувека назад как более удобная альтернатива миниатюрным лампам с нитями накаливания. Новые осветительные элементы были более удобны, просты в эксплуатации и энергоэффективны. На протяжении последних 30 лет светодиоды совершенствуются и дорабатываются, захватывая все большую часть рынка. Причиной большой популярности стала эксплуатационная надёжность, большой рабочий ресурс и простой принцип работы светодиода.

Светодиоды

Историческая справка

Исторически изобретателями светодиодов считаются физики Г. Раунд, О. Лосев и Н. Холоньяк, которые по-своему дополняли технологию в 1907, 1927 и 1962 годах, соответственно:

  1. Г. Раунд исследовал излучение света твердотельным диодом и открыл электролюминесценцию.
  2. О. В. Лосев в ходе экспериментов открыл электролюминесценцию полупроводникового перехода и запатентовал «световое реле».
  3. Н. Холоньяк считается изобретателем первого светодиода, применяемого на практике.

Светодиод Холоньяка светился в красном диапазоне. Его последователи и разработчики дальнейших лет разработали жёлтый, синий и зелёный светодиоды. Первый элемент высокой яркости для применения в волоконно-оптических линиях был разработал в 1976 году. Синий светодиод  LED был сконструирован в начале 1990-х трио японских исследователей: Накамура, Амано и Акасаки.

Эта разработка отличалась крайне малой себестоимостью и, по сути, открыла эпоху повсеместного применения LED-светодиодов. В 2014 году японские инженеры получили за это Нобелевскую премию по физике.

В нынешнем мире светодиоды встречаются повсеместно:

  • в наружном и внутреннем освещении светодиодными лампами и лентами;
  • как индикаторы для буквенно-цифровых табло;
  • в рекламной технике: бегущих строках, уличных экранах, стендах и т.п;
  • в светофорах и уличном освещении;
  • в дорожных знаках со светодиодным оснащением;
  • в USB-устройствах и игрушках;
  • в подсветке дисплеев телевизоров, мобильных устройств.

Устройство светодиода

Конструкция светодиода представлена следующими составляющими:

  • эпоксидная линза;
  • кристалл-полупроводник;
  • отражатель;
  • проволочные контакты;
  • электроды (катод и анод);
  • плоский срез-основание.

Устройство простейшего DIP-светодиода

Рабочие контакты закреплены в основании и проходят сквозь него. Другие компоненты лампы находятся внутри неё в герметичном пространстве. Оно образовано спайкой линзы и основания. При сборке на катоде закрепляется кристалл, а на контактах – проводники, которые через p-n-переход подключены к кристаллу.

Что такое OLED?

OLED – это органические полупроводниковые светодиоды, которые производятся из органических компонентов, которые светятся при прохождении электрического тока. Для их производства применяются многослойные тонкоплёночные структуры из различных полимеров. Принцип действия таких светодиодов также базируется на p-n-переходе. Преимущества OLED проявляются в сфере дисплеев – по сравнению с жидкокристаллическими и плазменными аналогами они выигрывают по яркости, контрастности, энергопотреблению и углам обзора. Технология OLED не используется для производства осветительных и индикаторных светодиодов.

Как работает элемент?

Принцип действия светодиода основывается на функциях и свойствах p-n-перехода. Под ним понимается специальная область, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). p-полупроводник является носителем положительного, а n-полупроводник – отрицательного заряда (электронов).

В конструкции светодиода положительным и отрицательным электродами выступают анод и катод, соответственно. Поверхность электродов, которая находится снаружи колбы, имеет металлические контактные площадки, к которым припаяны выводы. Таким образом, после подачи положительного заряда на анод и отрицательного – на катод – на p-n переходе начинает протекание электрического тока.

Рекомбинация на p-n переходе

При прямом включении питания дырки из области p-полупроводника и электроны из области n-полупроводника буду направлено двигаться на встречу друг другу. В результате этого на границе дырочно-электронного перехода происходит рекомбинация, то есть обмен, и выделяется световая энергия в виде фотонов.

Для преобразования фотонов в видимый свет материал подбирается таким образом, чтобы длина их волна оставалась в видимых пределах цветового спектра.

Разновидности светодиодов

Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.

В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный поток света и используются в электронном оборудовании, приборных и навигационных панелях и т.д.

Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.

По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:

  • DIP. Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
  • «Пиранья» или Superflux. Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
  • SMD. Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
  • COB. Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.

Типы корпусов светодиодов

Технические характеристики и их зависимость друг от друга

Основными функциональными и эксплуатационными параметрами светодиодных светильников являются:

  • интенсивность светового потока (яркость);
  • рабочее напряжение;
  • сила тока;
  • цветовая характеристика;
  • длина волны.

Светодиодное напряжение и яркость выступают прямо пропорциональными величинами – чем выше одна, тем выше другая. Но это не напряжение питающего тока, а величина падения напряжения на приборе. Кроме того, от напряжения зависит и цвет светодиода. Таким образом, между собой связаны яркость, длина волны, напряжение и цвет светодиода, а их соотношение представлено в следующей таблице.

Цвет

Длина волны

Напряжение

Белый Широкий спектр 3,0-3,7 В
Ультрафиолетовый 10-400 нм 3,1-44 В
Фиолетовый 400-450 нм 2,8-4 В
Синий 450-500 нм 2,5-3,7 В
Зелёный 500-570 нм 2,2-3,5 В
Жёлтый 570-590 нм 2,1-2,2 В
Оранжевый 590-610 нм 2,3-2,1 В
Красный 610-760 нм 1,6-2,03 В
Инфракрасный >760 <1,9 В

Принцип действия микроэлемента так устроен, что для стабильной работы в соответствии с номинальными характеристиками необходимо отслеживать не напряжение питания, а силу тока. Светодиоды работают от пульсирующего или постоянного тока, регулируя интенсивность которого можно изменять яркость излучения. Индикаторные светодиоды работают при токе в пределах 10-20 мА, а осветительные – от 20 мА и выше. Так, к примеру, элементы типа COB с четырьмя чипами требуют 80 мА.

Цветовая характеристика

Цвет свечения светодиодного элемента зависит от длины волны, которая измеряется в нанометрах. Для изменения цвета свечения в материал полупроводника на этапе производства добавляются активные вещества:

  • полупроводники обрабатываются аллюминий-индий-галлием (AlInGaP) для получения красного цвета;
  • оттенки зелёного и сине-голубого спектра получаются с использованием индий-нитрида галлия (InGaN);
  • для получения белого свечения на базе синего светодиода его кристалл покрывают люминофором, который преобразует синий спектр в красный и жёлтый свет;
  • для фиолетового свечения применяется индий-галлия нитрид;
  • для оранжевого – галлия фосфид-арсенид;
  • для синего – селенид цинка, карбид кремния или индий-галлия нитрид.

Цветовые характеристики

Аналогично методу получения белого свечения можно использовать люминофоры разных цветов для получения дополнительных оттенков. Так, красный люминофор позволяет выпускать розовые и пурпурные светодиоды, а зелёный – салатных оттенков. В обоих случаях люминофор наносит на основу в виде синего светодиода.

Преимущества

Особенности того, как работает светодиод, дали ему несколько важных эксплуатационных и функциональных достоинств перед другими видами преобразователей электрической энергии в световую:

  • современные светодиоды не уступают по параметрам светоотдачи металлогалогенным и натриевым газоразрядным лампам;
  • конструкция практически полностью исключает выход из строя каких-либо компонентов из-за вибрации и механических повреждений;
  • LED-светильники малоинерционные, то есть моментально достигают полной яркости после включения;
  • современный ассортимент позволяет выбирать модели со спектром от 2700 до 6500 K;
  • внушительный рабочий ресурс – до 100 000 часов;
  • ценовая доступность индикаторных светодиодов;
  • светодиодное освещение, как правило, не требует большого напряжения и сохраняет пожарную безопасность,;
  • температуры ниже 0˚С почти не сказываются на работоспособности устройств;
  • строение светодиода не предусматривает использование фосфора, ртути, других опасных веществ или ультрафиолетового излучения.